Autonomous Car Prototype Design Using Udacity Simulator With Convolutional Neural Network
Abstract
This research presents the process and development of an autonomous vehicle prototype using Udacity Simulator with the Convolutional Neural Network (CNN) method. This research uses NVIDIA CNN Architecture for its convolutional neural network architecture. The objective of this research is to design and generate a machine learning model to run the Udacity simulator in autonomous mode, which allowing car objects on the simulator to move autonomously. The proposed approach involves training a CNN model using a labeled dataset of tracks images captured through training mode. The output of the CNN model is then used to control the steering and acceleration commands of the vehicle. The performance of the machine learning model is evaluated using MSE, RMSE, and MAE parameters. In addition, it is also evaluated on its ability to navigate one of the tracks in the simulator.
Downloads
Hak cipta jurnal ini ditugaskan untuk KALBISCIENTIA sebagai penerbit jurnal berdasarkan pengetahuan penulis, sedangkan hak moral publikasi merupakan milik penulis. Setiap publikasi cetak dan elektronik dapat diakses secara terbuka untuk tujuan pendidikan, penelitian, dan perpustakaan. Dewan editorial tidak bertanggung jawab atas pelanggaran hak cipta kepada pihak lain selain dari yang telah disebutkan sebelumnya. Reproduksi bagian mana pun dari jurnal ini (dicetak atau online) hanya akan diizinkan dengan izin tertulis dari KALBISCIENTIA: Jurnal Sains dan Teknologi.